A long time ago, I did a limited comparison of our solar system with scaled versions of itself and with Kepler-62. But there are far more systems, and far more places to visit within a star system.

At the risk of being a bit table-spammy, this looks at a more or less complete set of trips between planets around: a G-dwarf (Sol), a K-dwarf (Kepler-62), an early M-dwarf (L98-59), and an ultracool dwarf (TRAPPIST-1).

The plotted trips consist of:

  • Traveling from a planet’s surface to a circular 200 km orbit. Three different values are considered: orbital speed at that altitude, an idealized 2 burn trasfer from the surface, and 20% more ΔV than circular velocity. This 20% figure is a rather arbitrary (and possibly pessimistic) way of considering atmospheric and gravity losses, but is at least consistent and should be vaguely accurate. The 200 km altitude is also arbitrary (if perhaps optimistic), but works as a parking orbit for Earth. Assuming thin atmospheres and/or low scale heights, it can be applied elsewhere. I’ll try to note planets where this is silly (eg: gas giants)
  • Hohmann transfers are performed to travelling between planets. Yes, this implies circular coplanar orbits. For the chosen systems, this is usually “good enough”.
  • I include the Oberth effect in the typical patched conic way (orbit goes from the nominal SOI edge to 200 km altitude).
  • Typical transfer and wait times are considered, but overall Δv is not added up. Just note that starting a transfer from body x to body y is the same as ending one from body y to body x (assuming no aerobraking).

Gravity assists and travel times/Δv for eg: brachistochrones are also being ignored. Things are complicated and messy enough even in the simple cases, and this is a relatively simple comparsion.

Transfer and wait times are symmetric. Transfer ΔVs are not. Start with a column, and go down to the row with your destination.

The raw spreadsheet(s), including some systems that were ultimately ignored

Our solar system

Body Mercury Venus Earth‡ Mars‡ Jupiter Saturn Uranus Neptune
Mass (kg) 3.301E+23 4.868E+24 5.972E+24 6.417E+23 1.898E+27 5.683E+26 8.681E+25 1.024E+26
Radius (m) 2.440E+06 6.052E+06 6.371E+06 3.390E+06 6.991E+07 5.823E+07 2.536E+07 2.562E+07
Semi-major axis (au) 0.39 0.73 1.00 1.52 5.20 9.58 19.19 30.07
Orbital period (yr) 0.24 0.62 1.00 1.88 11.87 29.66 84.07 164.89
Orbital speed (m/s) 47872 34903 29785 24129 13057 9622 6799 5432
SOI (m) 1.124E+08 6.204E+08 9.246E+08 5.772E+08 4.821E+10 5.481E+10 5.177E+10 8.665E+10
200 km orbit (m/s) 2889 7209 7788 3454 42508† 25479† 15055† 16269†
Ideal Δv (surface to 200 km orbit, m/s) 3121 7445 8031 3655 42630† 25566† 15174† 16395†
200 km orbit with 20% margin (m/s) 3467 8650 9346 4145 51010† 30574† 18066† 19522†
Time between launch windows (yr) Mercury Venus Earth‡ Mars‡ Jupiter Saturn Uranus Neptune
Mercury   0.39 0.32 0.28 0.25 0.24 0.24 0.24
Venus 0.39   1.64 0.93 0.66 0.63 0.63 0.62
Earth‡ 0.32 1.64   2.14 1.09 1.03 1.01 1.01
Mars‡ 0.28 0.93 2.14   2.23 2.01 1.92 1.90
Jupiter 0.25 0.66 1.09 2.23   19.79 13.82 12.79
Saturn 0.24 0.63 1.03 2.01 19.79   45.84 36.17
Uranus 0.24 0.63 1.01 1.92 13.82 45.84   171.53
Neptune 0.24 0.62 1.01 1.90 12.79 36.17 171.53  
Transfer time (yr) Mercury Venus Earth‡ Mars‡ Jupiter Saturn Uranus Neptune
Mercury   0.21 0.29 0.47 2.34 5.56 15.31 29.71
Venus 0.21   0.40 0.60 2.55 5.85 15.72 30.21
Earth‡ 0.29 0.40   0.71 2.73 6.09 16.04 30.62
Mars‡ 0.47 0.60 0.71   3.08 6.54 16.67 31.39
Jupiter 2.34 2.55 2.73 3.08   10.05 21.30 37.03
Saturn 5.56 5.85 6.09 6.54 10.05   27.28 44.14
Uranus 15.31 15.72 16.04 16.67 21.30 27.28   61.12
Neptune 29.71 30.21 30.62 31.39 37.03 44.14 61.12  
Transfer Δv (m/s) Mercury Venus Earth‡ Mars‡ Jupiter Saturn Uranus Neptune
Mercury   4487 5523 6577 18121 11197 6917 7184
Venus 5048   3455 3331 17924 11032 6801 7125
Earth‡ 7536 3273   2089 17828 10943 6735 7090
Mars‡ 10327 4426 3575   17715 10825 6639 7038
Jupiter 15016 7997 6275 4183   10568 6361 6869
Saturn 16048 9031 7261 5545 17591   6267 6795
Uranus 16688 9715 7951 6530 17656 10565   6744
Neptune 16924 9975 8220 6921 17696 10603 6243  

There’s nothing really new here, but it’s a good reference.1 The rescaled variants just add messiness, so are staying in the spreadsheet.

Kepler-62

Kepler-62 is a K2V star with 6 known planets orbiting it. Two of them (Kepler-62 e and Kepler-62 f) are a pair of super-earths with insolations that make them plausibly habitable. The masses are generally poorly measured, with only maximum estimates.2 As such, I am using plausible values found via a mass-radius relation3. Specifically, b and c are considered terrestrial, while the rest are neptunian. Even so, Kepler-62 d is the only one that I’m relatively certain is an ice giant.

Kepler 62 b c d e‡ f‡
Mass (kg) 1.528E+25 6.376E+23 2.665E+25 3.199E+25 1.989E+25
Radius (m) 8.355E+06 3.444E+06 1.244E+07 1.027E+07 8.993E+06
Semi-major axis (au) 0.0553 0.0292 0.12 0.427 0.718
Orbital period (yr) 0.0156 0.0341 0.0497 0.3351 0.7318
Orbital speed (m/s) 105208 144784 71420 37861 29198
SOI (m) 8.636E+07 1.280E+07 2.341E+08 8.962E+08 1.246E+09
200 km orbit (m/s) 10917 3417 11863† 14281† 12016
ideal Δv (surface to 200 km orbit, m/s) 11177 3613 12053† 14558† 12281
Δv (200 km orbit w/ 20% margin, m/s) 13100 4101 14235† 17138† 14419
Time between launch windows (yr) b c d e‡ f‡
Kepler-62 b   0.029 0.023 0.016 0.016
Kepler-62 c 0.029   0.108 0.038 0.036
Kepler-62 d 0.023 0.108   0.058 0.053
Kepler-62 e‡ 0.016 0.038 0.058   0.618
Kepler-62 f‡ 0.016 0.036 0.053 0.618  
Transfer time (yr) b c d e‡ f‡
Kepler-62 b   0.005 0.016 0.071 0.145
Kepler-62 c 0.005   0.012 0.066 0.137
Kepler-62 d 0.016 0.012   0.086 0.163
Kepler-62 e‡ 0.071 0.066 0.086   0.261
Kepler-62 f‡ 0.145 0.137 0.163 0.261  
Transfer Δv (m/s) b c d e‡ f‡
Kepler-62 b   17837 10094 13869 12809
Kepler-62 c 12096   19460 17252 14986
Kepler-62 d 12211 35642   9521 9683
Kepler-62 e‡ 26832 50049 12299   5376
Kepler-62 f‡ 29960 52662 15586 6304  

If these look different last time, it’s from using (I think) more accurate masses. While treating the estimate as a point value instead of a distribution is wrong3 (as is arbitrarily picking between the Neptunian and Terran options), it should be considerably better than the very broad lower mass limits:

Planet b c d e‡ f‡
Radius (\(R_🜨\)) 1.31 ± 0.04 0.54 ± 0.03 1.95 ± 0.07 1.61 ± 0.05 1.41 ± 0.07
Maximum (\(M_🜨\)) 9 4 14 36 35
Terrestrial (\(M_🜨\)) 2.558 0.1068 10.645 5.357 3.330
Neptunian (\(M_🜨\)) 2.271 0.5044 4.462 3.223 2.573

L98-59

A less well known M-dwarf system, but also with some rocky planets.4 At ~4x the mass of TRAPPIST-1 (M3V vs M8V), it also helps to fill in a gap in my cross-system comparsion.

L98-59 b c d e f‡
Mass (kg) 2.747E+024 1.194E+025 9.794E+024 1.684E+025 1.672E+025
Radius (m) 5.338E+06 8.476E+06 1.038E+07 9.057E+06 9.121E+06
Semi-major axis (au) 0.0223 0.0309 0.0494 0.0712 0.1052
Orbital period (yr) 0.0062 0.0101 0.0204 0.0351 0.0631
Orbital speed (m/s) 107832 91605 72450 60348 49647
SOI (m) 2.472E+07 6.166E+07 9.106E+07 1.630E+08 2.402E+08
200 km orbit (m/s) 5754 9585 7861 11019 10943
Ideal Δv (surface to 200 km orbit, m/s) 5967 9810 8012 11261 11181
200 km orbit with 20% margin (m/s) 6904 11502 9434 13223 13131
Time between launch windows (yr) b c d e f‡
L98-59 b   0.0158 0.0088 0.0075 0.0068
L98-59 c 0.0158   0.0200 0.0142 0.0120
L98-59 d 0.0088 0.0200   0.0487 0.0301
L98-59 e 0.0075 0.0142 0.0487   0.0791
L98-59 f‡ 0.0068 0.0120 0.0301 0.0791  
Transfer time (yr) b c d e f‡
L98-59 b   0.0040 0.0063 0.0093 0.0149
L98-59 c 0.0040   0.0074 0.0107 0.0164
L98-59 d 0.0063 0.0074   0.0137 0.0199
L98-59 e 0.0093 0.0107 0.0137   0.0242
L98-59 f‡ 0.0149 0.0164 0.0199 0.0242  
Transfer Δv (m/s) b c d e f‡
L98-59 b   5168 10675 13013 14388
L98-59 c 5281   5861 9193 11247
L98-59 d 14318 6478   5162 7206
L98-59 e 20487 11217 4330   5045
L98-59 f‡ 25761 16005 8105 5104  

TRAPPIST-1

Ah, yes. That infamous M8V system with 8 planets, 3 of which are in the habitable zone.5

TRAPPIST-1 b c d e‡ f‡ g‡ h
Mass (kg) 6.074E+24 6.904E+24 1.774E+24 4.611E+24 5.578E+24 6.856E+24 1.977E+24
Radius (m) 7.150E+06 6.984E+06 5.000E+06 5.804E+06 6.671E+06 7.322E+06 4.930E+06
Semi-major axis (au) 0.0115 0.0158 0.0223 0.0293 0.0385 0.0469 0.0619
Orbital period (yr) 0.0041 0.0066 0.0111 0.0167 0.0252 0.0338 0.0514
Orbital speed (m/s) 82686 70655 59528 51925 45265 41039 35704
SOI (m) 2.829E+07 4.078E+07 3.336E+07 6.425E+07 9.124E+07 1.205E+08 9.685E+07
200 km orbit (m/s) 7426 8009 4771 7159 7361 7799 5071
Ideal Δv (surface to 200 km orbit, m/s) 7633 8236 4960 7404 7580 8011 5275
200 km orbit with 20% margin (m/s) 8912 9610 5725 8591 8833 9359 6085
Time between launch windows (yr) b c d e‡ f‡ g‡ h
TRAPPIST-1 b   0.0110 0.0066 0.0055 0.0049 0.0047 0.0045
TRAPPIST-1 c 0.0110   0.0165 0.0110 0.0090 0.0082 0.0076
TRAPPIST-1 d 0.0066 0.0165   0.0330 0.0198 0.0165 0.0141
TRAPPIST-1 e‡ 0.0055 0.0110 0.0330   0.0495 0.0330 0.0247
TRAPPIST-1 f‡ 0.0049 0.0090 0.0198 0.0495   0.0989 0.0495
TRAPPIST-1 g‡ 0.0047 0.0082 0.0165 0.0330 0.0989   0.0990
TRAPPIST-1 h 0.0045 0.0076 0.0141 0.0247 0.0495 0.0990  
Transfer time (yr) b c d e‡ f‡ g‡ h
TRAPPIST-1 b   0.0008 0.0011 0.0015 0.0020 0.0025 0.0035
TRAPPIST-1 c 0.0008   0.0013 0.0017 0.0022 0.0028 0.0038
TRAPPIST-1 d 0.0011 0.0013   0.0021 0.0027 0.0032 0.0043
TRAPPIST-1 e‡ 0.0015 0.0017 0.0021   0.0031 0.0037 0.0049
TRAPPIST-1 f‡ 0.0020 0.0022 0.0027 0.0031   0.0044 0.0056
TRAPPIST-1 g‡ 0.0025 0.0028 0.0032 0.0037 0.0044   0.0063
TRAPPIST-1 h 0.0035 0.0038 0.0043 0.0049 0.0056 0.0063  
Transfer Δv (m/s) b c d e‡ f‡ g‡ h
TRAPPIST-1 b   3767 7286 8923 10280 10808 12099
TRAPPIST-1 c 3540   3376 5653 7316 8182 9623
TRAPPIST-1 d 7767 3775   3150 4584 5603 6905
TRAPPIST-1 e‡ 11248 6237 2560   3148 4015 4881
TRAPPIST-1 f‡ 14416 8945 4947 3072   3077 3197
TRAPPIST-1 g‡ 16410 10798 6810 4033 2879   2364
TRAPPIST-1 h 18845 13179 9332 5749 3827 3229  

Final Thoughts

TRAPPIST-1 is the only system where the transfer Δvs don’t seem to jump enormously when compared with Sol’s. I think this shows the planets being tightly packed and low mass when compared with the others. The planet masses have a huge effect in terms of getting to orbit also, dominating over transfer numbers if one plans to land. This might mean that most places are actually harder from an interplanetary travel perspective than Earth, but could also be observation bias.

Transfer times and transfer window frequency are more or less monotonic with stellar mass^-1. Likewise SOI sizes. Planet orbital speeds aren’t quite, but that’s in part because of how the distributions of the 4 systems vary.

Mission times could potentially be in ‘easy’ reach, being no more than some proposed lunar missions or actual space station ones, though how that interacts with the Δv numbers for Kepler-62 and L98-59 would require far more detailed analysis that I feel like doing. Maybe Project Rho has some useful heuristics.

It was surprisingly hard to find good exo-earth analogs. I know that we’ve found far more hot jupiters and neptunes, but still… (eg: Kepler-90 was initially intriguing, but the planets closest to having reasonable instellations were gas giants. Similarly, all of Kepler-80’s planets are also quite hot)

† Planet is (or probably is) a gas or ice giant, so don’t take these figures too seriously.

‡ Planet is or may be relatively habitable.

Data Sources